
RPS delays were caused by a path not being available when the required data came under a device read head. Since a |1

path was not available, the device could not reconnect to the channel or control unit. Consequently, data could not be read and |
transmitted, and another rotation of the platter was experienced until the data again came under the device read head. Multiple |
rotations might be required, depending on the busy level of the path. |

An array is an ordered collection of physical devices (disk drive modules) that are used to define logical volumes or |2

devices. |

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.1

Rule WLM365: Non-paging DASD disconnect time was a major cause of DASD
delay

Finding: CPExpert has determined that non-paging DASD disconnect (DISC) time
was a major cause of delay in DASD response for the I/O operations of the
service class.

Impact: This finding may have a MEDIUM IMPACT or HIGH IMPACT on the
performance of the service class. This finding applies only with OS/390
Release 3 and subsequent versions.

Logic flow: The following rule causes this rule to be invoked:
Rule WLM361: Non-paging DASD I/O activity caused significant delays

Discussion: DISC means that there is some delay that is often (but not always) |
associated with a mechanical movement during which the device |
disconnects from the control unit (or the control unit disconnects from the |
channel). |

|
With legacy systems (e.g., 3380 drives attached to 3990-2 control units), |
the DISC time of most concern was associated with seek (arm movement) |
and rotational position sensing (time waiting for the disk platter to rotate to |
the location where desired data resides). Considerable performance |
improvement efforts were directed at reducing the seek activity and |
reducing the rotational position sensing (RPS) delays for the legacy |1

systems. These two mechanical delays still exist for most modern |
redundant array of independent disks (RAID) systems, but their impact can |2

not be directly reduced with normal methods. |
|

With modern disks, data is cached into device cache buffers that contain |
data read from a track on the disk platter. Using device cache buffers |
containing the track data eliminated the multiple-RPS delays caused by a |
path busy when the device tried to reconnect. Required data is read into |
the device cache buffer during a single rotation and stored until a path is |
available to transfer the data. |

|

Artis has described a “sibling PEND” condition that results from collisions within the physical disk subsystem of RAID |3

devices. See “Sibling PEND: Like a Wheel within a Wheel,” www.cmg.org/cmgpap/int449.pdf. While this condition is titled “sibling |
PEND,” the time properly belongs in DISC time, rather than PEND time . |

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.2

In addition to the cache buffer design, modern control units such as the |
3990-6 or 2105 have very large cache memory installed. With cache in the |
control units, data to be read can be transferred in a variety of ways, |
depending on where the data resides. |

|
For a read operation, desired data often is found in the control unit cache. |
If the required data is in cache, the data can be transferred between the |
control unit cache and the channel, and this transfer is done at channel |
speed. If the required data is not in cache, the data can be transferred |
between the device and channel (and concurrently placed into the control |
unit cache for subsequent access). |

|
For write operations, data can be placed into Non-volatile Storage (NVS) as |
a part of the control unit. Write operations normally end as the date to be |
written is placed in the NVS; and the storage processor writes the data to |
the device asynchronous with other activity (as a “back end” staging |
operation). See subsequent discussion for more detail about read and |
write operations. |

|
 The storage director can simultaneously transfer data between the channel |

and device and manage the data transfer of different tracks between the |
cache and channel, and the cache and the device. With large amounts of |
cache memory, a high percent of data accesses normally will be resolved |
from the fast cache memory and the relatively slow device will not cause |
significant delays. |

|
As a result of the above improvements, DISC time for modern systems is |
a result of cache read miss for read operations, back-end staging delay for |
write operations, peer-to-peer remote copy (PPRC) operations, and other |
miscellaneous reasons . DISC time often can be very small with adequate |3

cache. For example, there would be zero disconnect time for a cache read |
hit (the record was found in the cache). However, DISC time can be large |
and can cause serious delay to I/O operations. |

|
C Read operations. With devices attached to cached controllers, a read |

operation finds required data in the cache (a “read hit”) or does not find |
required data in the cache (a “read miss”). |

|
If a read operation finds data in the cache, acquiring the data involves |
only the transfer of data from cache. In this case, the data transfer takes |
place at channel speeds. Channel speeds can vary, depending on the |
channel type, from about 4.5 MB per second (parallel channels), up to 18 |

The data is read into cache, unless Inhibit Cache Loading had been specified. With Inhibit Cache Loading, the cache is |4

searched to see whether the record is in cache (from a previous I/O operation). if the requested track is not in cache, the channel |
program operates directly with DASD. Applications can use Inhibit Cache Loading when it is known that records read would not |
likely be accessed again. |

The initial design did not consider that the device and the controller would be “busy” during the transfer of the track from |5

the device to the controller. The belief was that the transfer of the track would be “off line” and not adversely impact performance. |
However, while the track was being transferred to the controller, the device and controller were busy and other I/O operations were |
constrained. With very active systems, this constraint could seriously degrade performance. By moving to record-level transfer for |
direct I/O, this constraint was removed. |

This might seem a moot point; if the device delay exists, why should it matter whether the time is a result of disconnect |6

between the channel and control unit or simply device delay time? The difference is that the exchange of disconnect and reconnect |
protocol traffic between the channel and control unit is eliminated with FICON. This exchange of protocol can add considerable |
overhead, and it is this overhead that is eliminated with FICON. The FICON controller times the device delays that occur simply for |
RMF reporting. |

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.3

MB per second (ESCON channels), to over 100MB per second (FICON |
channels). |

|
If a read operation does not find data in the cache, the data must be read |
from the physical disk device . With the IBM-3390-3 controller and the |4

initial release of the IBM-3390-6 controller, an entire track would be read |
into cache for a direct read. This algorithm was changed to read only the |
record required in a direct read; the change eliminated unnecessary |
activity by the controller . |5

|
The implications of reading the data from the physical disk device differ |
depending on the type of channel: |

|
C With parallel channels and ESCON channels, the control unit |

disconnects from the channel while the data is being read. After the |
data has been read, the control unit attempts to reconnect to the |
channel. The channel must be available when the control unit |
attempts to reconnect, or additional overhead results. Consequently, |
channel busy is an important metric with parallel channels and |
ESCON channels. IBM suggests that these channel types should not |
have a consistent busy greater than 50% to avoid unacceptable |
overhead. |

|
C With FICON Native channels and control units, the control unit does |

not disconnect from the channel while the data is being read, as |
disconnect and reconnect protocols have been eliminated with |
FICON. When the frames of data read from DASD are ready to be |
presented to the channel, the frames simply queue along with any |
other frames of data (from other I/O operations transferring data) and |
the data frames are interleaved at channel transfer rates. |

|
While the device delays caused by cache miss operations do not |
result in disconnect/reconnect protocol exchanges between channel |
and control unit, the actual device delay time exists nonetheless . |6

With the Sequential Staging Performance Enhancement, the 3990-3 can prestage up to a full cylinder (15 tracks) into the7

cache. |

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.4

These device delays are timed by a FICON control unit, and the time |
is reported to RMF as DISC time. Thus, the delay time is available |
with FICON channels and control units and titled “DISC” time, even |
though the actual disconnect and reconnect activities do not occur. |

|
In order to improve the probability of a read hit, the controller can |
prestage data into its cache. Prestaging means that data is read into the |
controller’s cache ahead of its actually being required for use by an |
application. The amount of data that is prestaged depends on (1) |
whether the data is being accessed in a direct (random) mode or in a |
sequential mode and (2) the controller model and the enhancements |
made to the controller. |

|
For direct mode, the 3990 Model 6 (with record cache) stages only the |
records requested into cache, eliminating the balance of the track staging |
as was implemented on initial versions of 3990-6 and on the 3990-3. As |
examples of prestaging for sequential mode, the 3990-3 reads up to two |
tracks into the cache before they are required, while the ESS 2105 |7

sequential staging reads up to two cylinders ahead. |
|

 Applications can indicate (using Define Extent) that data is to be |
processed in a sequential mode. With the 3990-6, IBM included a |
sequential detection algorithm that automatically detects whether data is |
being read sequentially, even if the user did not indicate that reads were |
in sequential mode. If the algorithm detects sequential access, data is |
prestaged automatically. For example, with the ESS 2105, when the |
algorithm detects that 6 or more tracks have been read in succession, the |
algorithm triggers the sequential staging process. |

|
During prestaging operations, the control unit regularly checks to see |
whether other I/O requests are waiting to be processed. If any are |
waiting, the control unit interrupts the prestage operation, processes the |
queued requests, and continues with the prestage. |

|
C Write operations. With devices attached to cached controllers, a |

number of options are available to help improve performance for |
particular applications. Use of these options vary depending on the data |
access characteristics of records being written, performance goals |
associated with the applications, amount of cache and NVS that is |
available, etc. Some of the common options are Bypass Cache Mode, |
Normal Caching Mode, Cache Fast Write Mode, and DASD Fast Write |
Mode. |

|

Source: IBM’s 3990 Planning, Installation, and Storage Administration Guide |8

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.5

C Bypass Cache Mode. The Bypass Cache Mode causes the data in |
the cache to be bypassed. The I/O write request is sent directly to |
DASD, but a search of the cache is performed because the track in |
the cache could have been modified by a previous I/O operation. If |
the track is in the cache, the corresponding cache slot is marked |
invalid to prevent a read hit by a subsequent I/O operation. If the |
cache slot had been modified by a previous cache fast write hit or a |
DASD fast write hit, the track is destaged and the slot is marked |
invalid. |

|
The performance of an I/O operation with Bypass Cache Mode is |
almost the same as if the write were performed via a noncache |
storage control. The Bypass Cache operation is slightly longer than |
a write via a noncache controller, because a directory search of the |
controller’s cache is required to determine whether the track is in |
cache. |

|
The controller presents channel end and device end only after the |
transfer operation is complete. Since the I/O write operation deals |
directly with the device, disconnect time can be significant. |

|
The Bypass Cache Mode might be used even though the control unit |
has considerable cache in situations where low priority files are “cache |
unfriendly” (meaning that they have a poor locality of reference), with |
very large files with high write activity when the files might “flood” the |
cache and cause a low read hit or write hit for other (perhaps more |
important) file accesses. |

|
C Normal Caching Mode. With Normal Caching Mode, all write I/O |

commands operate directly with the device. In cache operations |
without cache fast write or DASD fast write, a write operation follows |
these general rules : |8

 |
C A format write operates directly with DASD. If the track is in |

cache, it is invalidated. This ensures that a subsequent read will |
result in a read miss. |

 |
C If the track modified by an update write operation is in cache, the |

cache and DASD are updated concurrently (a write hit). This |
ensures that the data in cache is current. |

 |
C If the track modified by an update write operation is not in the |

cache, the operation is a write miss. Only the data on DASD is |
updated. |

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.6

 |
C No new tracks are transferred from DASD to cache as the result |

of a write operation. |
 |

C A track in cache is never made "most recently used" by a write hit |
in basic caching operations. |

 |
If a write hit occurs (the write request updates a record that is already |
in cache), the controller transfers the data to both cache and DASD. |
This ensures that the data in cache is current, and is available for a |
subsequent read operation. |

|
If a write Miss occurs (the write request updates a record that is not |
in cache) data is transferred from the channel to DASD, and is not |
placed into cache. |

|
The primary objective of a basic cache write operation is to emulate |
a DASD write, to ensure that the DASD copy of the data is always |
valid, and to ensure that any copy of the data retained in cache is |
valid. |

|
The controller presents channel end and device end only after the |
transfer operation is complete. Since the I/O write operation deals |
directly with the device, disconnect time can be significant. |

|
C Cache Fast Write Mode. The Cache Fast Write Mode causes data |

to be placed into cache immediately, and there is no interaction with |
the device nor with NVS. Cache fast write is useful in situations |
where the data that may not be required after the completion of the |
current job or in situations where the data could be easily |
reconstructed if necessary (data could be reconstructed if the cache |
failed). |

|
If the record to be written is already in the cache, this is considered a |
“write hit” and the entire operation is performed with the cache. With |
either a write miss (data is not in the cache) or a write hit, no DASD |
access is required. However, write hits cause the record to be made |
"most recently used." When cache space is needed, the controller |
destages the least recently used data to DASD. |

|
In most cases when Cache Fast Write Mode is used, the data is only |
temporary, and can be discarded when no longer required. For |
example, sorts would not require permanent data for their sort work |
files. |

|

There can be considerable device activity if the data is destaged because cache space was needed or after cache fast |9

write is turned off. This destage activity could adversely impact other I/O operations requiring access to the device. |

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.7

If the cache is reinitialized, all cache fast write data is lost and the |
cache fast write identifier is incremented. Subsequent I/O operations |
with the old cache fast write identifier are reported to the requesting |
program as a permanent I/O error. |

|
The controller presents channel end and device end after the data has |
been placed in the cache. Since the I/O write operation deals only |
with the cache, disconnect time is eliminated for normal I/O |
operations . |9

|
C DASD Fast Write Mode. In DASD Fast Write Mode, the data is |

stored simultaneously in cache storage and in nonvolatile storage. |
Since data is stored in NVS, access to a physical DASD is not |
required for write hits to ensure data integrity. The copy of the data |
in nonvolatile storage allows storage processor to continue without |
waiting for the data to be written to DASD. The data remains in cache |
storage and in nonvolatile storage until the storage control destages |
the data to DASD. Since completion of the write is indicated when the |
cache data transfer is complete, DASD Fast Write provides a |
significant performance enhancement over basic write operations; the |
DASD fast write hit is as fast as a read hit. |

|
In MVS, activation and deactivation of DASD fast write is provided by |
a system utilities command with extended function programming |
support. DASD fast write remains active until explicitly deactivated by |
another command. DASD fast write is activated at a volume level and |
is the default for all write operations directed at that volume. DASD |
fast write can be inhibited at the channel program level. |

 |
If DASD fast write is deactivated, the 3990 destages the DASD fast |
write data to DASD. The 3990 also destages the DASD fast write |
data to DASD if (1) NVS is deactivated, (2) subsystem caching or |
device caching is deactivated, and (3) more space is made available |
in the cache or NVS. These destaging operations are between the |
cache or NVS and DASD. Consequently, the activity does not result |
in disconnect time for normal I/O operations (that is, they would not be |
reflected as DISC time by RMF). |

|
|
|

The following example illustrates the output from Rule WLM365: |
|

©Copyright 1997, Computer Management Sciences, Inc. Revised: October, 2003 Rule WLM365.8

RULE WLM365: NON-PAGING DASD DISCONNECT TIME WAS A MAJOR CAUSE OF DELAYS

 CICSDEFA: A major part of the delay to the SYSSTC server was due to non-
 paging DASD device disconnect (DISC) time. Disconnect time is caused
 by missed read hits (the data required was not in the controller's
 cache), potentially back-end staging delay for cache write operations,
 peer-to-peer remote copy (PPRC) operations, and other miscellaneous
 reasons. Please refer to the WLM Component User Manual for advice on how
 to minimize device disconnect time.

|
|
|
|
|
|
|
|
|
|

